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LINEAR DRAINAGE IN A FRESH GROUNDWATER FRINGE

ABOVE SALINE GROUNDWATER

UDC 532.546.06V. N. Émikh

Possible flow variants as a function of the determining physical parameters are analyzed within the
framework of the boundary-value problem of horizontal slit drainage in a fresh groundwater fringe
above saline groundwater.

Key words: freshwater fringe, linear drains, infiltration, mapping parameters, critical flow
regime.

Kapranov [1] constructed a solution of the Verigin problem of flow in a freshwater fringe to a system horizontal
slit drains, which are further called linear drains, for their incomplete flooding. The unique solvability of the system
of equations with respect to the mapping parameters related to the velocity hodograph was analytically established;
in the calculations, a critical flow regime was found at the interface between fresh and saline groundwater. The
present work reveals the physical content of the problem in the general formulation — with complete flooding of
the drains.

1. Formulation and Solution of the Problem; Mapping Parameters. Stationary plane filtration in
a fresh groundwater fringe above immovable saline water with uniform infiltration at rate ε is studied. The supply
to the infiltration zone is compensated by outflow into equidistant linear drains of identical width located at the
same depth. Because the flow is periodic, it is sufficient to study it within one half-period (Fig. 1).

In the case of complete flooding of the drains, the boundary-value problem describing the flow consists
of finding its complex potential ω = ϕ + iψ (ϕ is the filtration velocity potential and ψ is the stream function)
normalized by the quantity κL (κ is the ground permeability and L is half the distance between the centers of
adjacent drains), which, in the filtration region, is an analytic function of the complex coordinate z = x + iy

normalized by L under the boundary conditions

CM : x = 0, ψ = 0; EN : x = 0, ψ = ε; AG: x = 1, ψ = ε;

MDN : y = 0, ϕ = 0; AC: ϕ+ y = 0, ψ − εx = 0; (1)

EG: ϕ− ρy = const, ψ = ε (ρ = (ρ2 − ρ1)/ρ1).

Here ρ1 and ρ2 are the densities of the fresh and saline water, respectively. The first condition on EG is a consequence
of the assumptions that the saline water is motionless and that the pressure is continuous in passing through this
segment. In Fig. 1, the depression curve AC is denoted by digit 1.

The problem is solved using the Polubarinova-Kochina method [2], which is based on using the analytical
theory of linear differential equations. The method seeks to find the functions Ω = dω/dζ and Z = dz/dζ determined
in the half-plane Im ζ � 0 of the auxiliary complex variable ζ = ξ+iη (Fig. 2). The velocity hodograph w̄ = wx+iwy

(Fig. 3) is a circular polygon of the same form as that in the model of an infiltration fringe with tubular drainage [3].
The procedure of constructing the solution is also similar and eventually leads to the following relations:
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Fig. 1. Flow region in the freshwater fringe.
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Fig. 2. Half-plane of the auxiliary complex variable.

dω

dζ
= 2c1F1(ζ)λ(ζ),

dz

dζ
= −ic1F2(ζ)λ(ζ), c1 > 0,

F1(ζ) = σU − 1
U
, F2(ζ) = αU +

β

U
, U = exp

W (ζ)
2

, (2)

λ(ζ) =

√
(ζ − p)(ζ − r)

(ζ − g)ζ(ζ − 1)(ζ −m)(ζ − n)
.

For the function λ(ζ), we choose the branch which is positive for ζ > r.
The function W (ζ) (Fig. 4) used to map the region of the complex filtration velocity w = wx − iwy onto the

half-plane Im ζ � 0 is given by the relations

W (ζ) = ln
2i+ βw

2iσ − αw
= ic0

ζ∫
0

Φ(u) du (c0 > 0),

Φ(u) =
(b− u)(u− f)
(p− u)(r − u)

Φ0(u), Φ0(u) =
1√

(u − g)u(1 − u)
, (3)

σ =
√
ε+ ρ+

√
ε(1 + ρ)√

ε+ ρ− √
ε(1 + ρ)

, α =
σ − 1
ε

+ σ + 1, β =
σ − 1
ε

− σ − 1.

In Figs. 3 and 4, the circled letters C and E denote the corresponding points in the limiting cases, which will be
considered in Sec. 2.
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Fig. 3. Filtration velocity hodograph.

Fig. 4. Intermediate region for mapping of the velocity hodograph onto the half-plane.

The function W contains the mapping parameters c0, b, d, f , p, g, and r. As in [3], at the first stage, we
solve the problem of finding the first five parameters with the two remaining parameters specified. The problem is
solved as follows.

Five equations for the required parameters are derived using representation (3) and the known elements of
the region W . During their transformation, the following auxiliary parameters are introduced:

k =
√
− g

1 − g
, s =

√
1 − g

r − g
, t =

√
1 − g

p− g
, Θ =

√
1 − g

d− g
. (4)

In the terms of (4), specifying the parameters g and r is equivalent to specifying the parameters k and s. The
parameter t is expressed in terms of them using the following relation obtained by transformation of one of the five
equations:

t = [s∆(τ) + τ∆(s)]/(1 − k2s2τ2),

∆(χ) =
√

(1 − χ2)(1 − k2χ2), τ = sn [ln (σK ′/π), k], K ′ = K(k′).
(5)

Here K(k′) is the complete elliptic integral of the first kind for the modulus k′ =
√

1 − k2 and sn is the symbol of
the elliptic Jacobi function [4].

The parameters c0 and Θ are calculated from the other two transformed equations; the second of these
parameters is linked, according to (4), to the parameter d:

c0k
′ =

π

2K ′ [Λ0(s, k′) − Λ0(t, k′)] +
∆(s)
s

− ∆(t)
t

; (6)

π

2K ′ [Λ0(t, k′) − Λ0(s, k′)][K − F (Θ, k)] −K[Z(t, k) − Z(s, k)]

+
∆(s)
s

Π
(
Θ,

1
s2
, k

)
− ∆(t)

t
Π

(
Θ,

1
t2
, k

)
= ln

√
α

β
. (7)
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The above relations contain incomplete elliptic integrals of the first kind F (Θ, k) and third kind Π(Θ, n, k) and the
standardized lambda-function Λ0(δ, k′) and zeta-function Z(δ, k) [4].

The parameters b and f are found as roots of the quadratic equation

Γ(γ) = γ2 − [p+ r − a(R− P )]γ + pr − a(pR− rP ) = 0,

a = c−1
0 , P = Φ−1

0 (p), R = Φ−1
0 (r).

(8)

The unique solvability of system (5)–(8) is established analytically for the following constraints on the parameters k
and s:

k0 � k < 1, 0 � s � s0. (9)

Here k0 is a root of the equation

K(k0)/K(k′0) = lnσ/π (k′0 =
√

1 − k2
0). (10)

The quantity s0 is defined by the equality

s0 =
√

(1 − τ2)/(1 − k2τ2). (11)

The coefficient c1 in Eqs. (2) plays the role of a scaling factor and can be eliminated from the computational
relations by using the relation that fixes the quantity L (by which the coordinates z are normalized) and follows
from relations (2) and (3) after their transformation as applied to the segment EG (see Figs. 1, 2, and 4):

c1
α+ βσ√

σ

g∫
−∞

cos
W0(ζ)

2
|λ(ζ)| dζ = 1,

W0(ζ) = c0

ζ∫
−∞

(b − u)(f − u) du
(p− u)(r − u)

√
(g − u)(−u)(1 − u)

.

(12)

Specifying the length l of the segments MD and ND and using (2), we obtain the following system of
equations for the parameters m and n:

c1

d∫
m

(
αU − β

U

)
|λ(ζ)| dζ = l, c1

n∫
d

( β
U

− αU
)
|λ(ζ)| dζ = l,

U = exp
W1(ζ)

2
, W1(ζ) = c0

ζ∫
1

(u− b)(u − f) du
(p− u)(r − u)

√
(u− g)u(u− 1)

.

(13)

As in other problems of this kind, in deriving one of the two equations for the parameters k and s, we specify
the depth T0 of the initial saline water surface, which is indicated in Fig. 1 by a dash-and-dotted straight line.
Under the assumption that the volume of saline water remains unchanged during the formation of the fringe, the
value of T0 is equal to the average ordinate of the points of the interface EG. Proceeding from this, we obtain the
equation

T +
c21(β2σ2 − α2)

σ

g∫
∞

( ζ∫
∞

sin
W0(u)

2
|λ(u)| du

)
cos

W0(ζ)
2

|λ(ζ)| dζ = T0. (14)

In using it, we need to preliminarily calculate the quantity of T , which is expressed from relations (2) and (3) after
their transformation as applied to the segment NE.

Among the determining physical parameters is the pressure head h on the drain; this quantity is linked to
the normalized filtration velocity potential ϕ by the relation

ϕ = −h, h = p/(ρ1g) + y. (15)

Here p is the flow pressure.
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The corresponding equation is obtained by deriving the expression for the potential ϕ at the point M located
on the drain. This expression depends on the position of the point P (see Figs. 3 and 4), at which

W = ∞, wx = 0, wy = −2σ/α > −1. (16)

According to (15), the following relation holds on the segment CM :
dp

dy
= −ρ1g(wy + 1).

This relation and the inequality in (16) imply that (dp/dy)P < 0: the point P is on the segment of increasing
pressure for motion downward from the point C and, by virtue of this, it can be located on the drain only when
the pressure at the drain exceeds atmospheric pressure; otherwise, the point P belongs to the segment CM and
divides it into two segments. In the latter case, the equation based on specifying the quantity hM is obtained, by
using relations (2), in the form

H − 2c1
[ p∫

1

(
σU − 1

U

)
|λ(u)| du −

m∫
p

(
σU +

1
U

)
|λ(u)| du

]
= hM . (17)

The function U(ζ) is defined in (13).
In the case P ∈MN , the quantity hM is given by the equality

H − 2c1

m∫
1

(
σU − 1

U

)
|λ(u)| du = hM . (18)

The ordinate H of the point C contained in the last equations should be calculated previously using representa-
tion (2) for z(ζ).

The programmed algorithm for determining the mapping parameters for the specified physical parameters ε,
ρ, hM , l, and L = 1 eventually reduces to finding the parameter k from Eq. (14), whose left side is treated as a
composite function of the indicated parameter. For each of its values fixed during this iterative procedure, one of
Eqs. (17) or (18) for the parameter s is solved numerically; in both these cycles, the required parameters are subject
to constraints (9). Next, in the internal part of the algorithm, the parameters c0, b, d, f , and p are determined from
Eqs. (5)–(8), and the coefficient c1 and the mapping parameters m and n are determined from Eqs. (12) and (13).
The unique solvability of Eqs. (13), (14), and (17) [or (18)] is ensured by the numerically established monotonicity
of the functions included in these equations.

2. Limiting and Particular Cases. As in the problem of a fringe with tubular drainage, the problem of
physical premises for the formation of flow to flooded linear drains is related primarily to constraints (9). Because
in both filtration models, the velocity hodograph is the same, the previous analysis (see [3, Sec. 3]) of the limiting
drainage regimes involving the indicated constraints is completely extended to the flow being studied. The main
results of this analysis are as follows.

Case s = s0. In this case, p = b = 1, i.e., the point B of inflection of the depression curve and the point P
of the segment CM coincide with the point C, which becomes the apex of the depression curve. The half-disc
|w̄ + i(1 + ε)/2| < (1 − ε)/2, Re w̄ � 0 falls out of the filtration velocity hodograph, and the half-band ReW > 0,
0 � ImW � π falls out of the regionW (see Figs. 3 and 4). On the segment CM , we have dp/dy = −ρ1g(wy+1) � 0,
where the equality satisfied only at the point C, and at the remaining points, the pressure is below atmospheric
pressure and its further arbitrarily small decrease should lead to air penetration into the drain. This implies that
in the case considered, the drainage rate is maximum admissible and should be established previously and that the
critical flow regime occurs in the case of drainage pumping [5]. In practice, vacuum tubular drainage is used in land
reclamation [6], but for linear drains, this regime is not characteristic and is rather of theoretical interest.

Case s = 0. In this case, r = −f = ∞: the points R and F coincide with the point E, which becomes the
apex of the interface, and at this point, w̄ = iρ. As a result, the half-disk |w̄ − iρ/2| < ρ/2, Re w̄ � 0 falls out of
the hodograph, and the half-band ReW < lnσ, 0 � ImW � π falls out of the region W (see Figs. 3 and 4). On
the segment EN , where also w̄ = iwy, we have wy � ρ, dp/dy = −ρ1g(wy + 1) � −ρ2g. In this case, the equality
characterizing the hydrostatic equilibrium in the saline water zone is satisfied only at the point E. On the remaining
part of the segment EN , the hydrodynamic-pressure gradient exceeds the hydrostatic-equilibrium gradient in the f
saline water zone, and further pressure decline should entrain the water in the flow.
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The indicated regime occurs at the limit of destabilization of the interface between fresh and saline water
and, hence, it also should be calculated previously. The question is what of the two critical situations occurs for
particular values of the determining physical parameters.

Case s0 = 0. This limiting case, first noted in [7] as the a double critical regime, combines the simple
critical regimes described above and, at the same time, separates them; for this reason, the double critical regime is
to be first calculated. In the case considered, both half-disks fall out of the hodograph, and the region W becomes
a rectangle which is mapped onto the half-plane Im ζ � 0 by the relation

W (ζ) = i
π

K ′
0

F
(√

ζ

k2
0 + k′20 ζ2

, k′0
)
, (19)

where K ′
0 = K(k′0). The moduli k0 and k′0 are determined from (10).

From Eq. (7), we obtain

Θ = sn ((K ′
0/π) ln (βσ/α), k0)

and then from the last equality in (4), we find the parameter d. Equations (12) and (13) for the parameters c1, m,
and n and the remaining computational formulas are also considerably simplified. In this case, λ(ζ) = 1/

√
ζ(ζ − g),

and the function W (ζ) is calculated according to (19).
From the previous analysis of the limiting case s = s0, it follows that one of the premises for the occurrence

of the double critical regime is drainage pumping.
Let us consider filtration in the freshwater fringe to the partially flooded drains. In relation to the model

considered in Sec. 1, this case is a particular one: the depression curve (curve 2 in Fig. 1) intersects the drain
orthogonally, and the velocity hodograph has the same form as that in the limiting case s = s0, but the flow studied
occurs in the normal regime. Appropriate changes should be made in relations (2) and (3), which represent the
solution of the problem: in this case, the function λ(ζ) does not contain the factors ζ − p and ζ − m, and the
function Φ(u) the factors b− u and p− u.

The determination of the mapping parameters using the algorithm described above eventually reduces to
finding the parameter k from the relation to which Eq. (14) is transformed. For each value of this parameter fixed
during the solution of the equation in the interval (k0, 1), the parameter s = s0 is calculated using relations (11),
(5), and (3). According to (5), we have t = 1, and Eqs. (6) and (7) are transformed as follows:

c0k
′ =

∆(s)
s

− π

2K ′ [1 − Λ0(s, k′)],

1∫
Θ

(∆(s)/s)u2 − c0k
′(u2 − s2)

∆(u)(u2 − s2)
du = ln

√
α

β
.

In this case, p = 1; from (8), we obtain f = r − aR [the parameter r is expressed in terms of s on the basis of the
second equality in (4)].

The coefficient c1 and the parameter n are found from the transformed equation (12) and the second equation
in (13). For m = 1, the first equation in (13) is transformed to the equality, from which the width l0 of the flooded
segment of the drains is determined.

The only critical regime possible in the flow considered is due to the presence of the interface, whose
destabilization is promoted by both enhancement of infiltration and a decrease in the drain width. In [1], this
regime was detected for the first time as a manifestation of the second of these factors: the extension of the zone
of action of infiltration water on saline water can lead to expulsion of the latter to the drains. In this case, the
velocity hodograph, the region of the function W , and all their associated relations are the same as those in the
double critical flow regime to the completely flooded drain, and the representations for the functions ω(ζ) and z(ζ)
and their related formulas do not contain the coefficient ζ −m.

In the determination of the saline water depth, a key role is played by the problem of a drained freshwater
lens resulting from uniform infiltration, considered by Polubarinova-Kochina [8]. This is the first model for the two-
dimensional filtration of liquids of different densities that, in the problem studied, describes the critical regime in
which the apex point E of the interface (dashed curve in Fig. 1) coincides with the point N when entering the drain
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and the zone breaks up into a chain of lenses. Both of the free boundaries of the lenses are arcs of ellipses whose
common focal points are located at the terminal points of the drains; in terms of the dimensionless (normalized
by L) geometrical quantities, their semiaxes are defined by the equalities (see Fig. 1)

1 = l1

√
(1 + ρ)(ε+ ρ)
ρ(1 + ε+ ρ)

, T1 = l1

√
ε

ρ(1 + ε+ ρ)
, (20)

L1 = l1

√
1 + ρ

(1 − ε)(1 + ε+ ρ)
, H1 = l1

√
ε(ε+ ρ)

(1 − ε)(1 + ε+ ρ)
(l1 = 1 − l).

The situation considered arises for ε = ε0 and T0 = T00; the parameter ε0 is determined from the first relation
in (20), and the quantity T00 is calculated on the basis of the equalities obtained using the well-known relations for
the geometrical parameters of the ellipse:

T00 = (π/4)T1, T 2
1 = 1 − l21. (21)

The same value of the quantity T00 can be obtained from the second equality in (20) for ε = ε0.
3. Hydrodynamic Analysis of the Problem. The theoretical investigation performed above, together

with numerical calculations, reveal the diversity of the hydrodynamic content of the formulated boundary-value
problem. The only rigorous foundation for such an analysis is the direct formulation, in which the implementation
conditions are established within the framework of the problem of the flow modeled and the dependence of flow
characteristics on the determining physical factors is studied; among the latter, the infiltration rate is the most
dynamic and, in some cases, controllable parameter.

In particular cases, the computational algorithm depends on whether the drains are partially or completely
flooded, and to maintain the normal drainage regime it is necessary that the specified value of the parameter ε be
matched to the value of T0. In this connection, for chosen values of l and ρ, one needs to determine the infiltration
rate and the initial depth of saline water in the situation where the depression curve reaches the drain at the
point M and the critical regime occurs at the interface. In this case, which will be called the boundary-critical case,
the calculations are performed for the model of partial flooding of the drains for l0 = l.

Because the interface should not reach the drains, we return to the model of Polubarinova-Kochina mentioned
in Sec. 2. From the first and third equalities in (20), we conclude that in this limiting model for L1 = 1, the following
relations hold:

ε = ε∗0 = 1 − ρ, l = l∗ = 1 −
√

2ρ/(1 + ρ). (22)

For real values of the parameters ε and ρ, which are hundredth and thousandth of unity, we have ε < ε∗0 and
L1 < 1; this implies that, as a rule, in the critical regime, the interface reaches the drain which is partially flooded.
Complete flooding occurs for drains of small width; in these cases, the interface in the boundary-critical regime is
below the drains. For this flow, the quantities ε = ε∗ and T0 = T ∗∗

0 are calculated.
In the case ε < ε∗, the drain is partially flooded with the depression curve reaching it if the pressure on the

drain is equal to atmospheric pressure; otherwise, the drain is completely flooded. The saline water depth should
satisfy the inequality T0 > T ∗

0 , in which the quantity T ∗
0 is previously determined for the specified value of ε in

the critical regime associated with the interface. According to calculations of T ∗
0 ∈ (0, T ∗∗

0 ), this extension of the
range of admissible values of the initial saline water depth is a response to a decrease in the infiltration rate. We
note that if the quantity T0 = T ∗

0 is included in the number of determining parameters, the value of ε for which the
quantity T ∗

0 was calculated should be treated as the maximum admissible infiltration rate.
The case ε > ε∗ requires a preliminary analysis because with the recession of saline water, their supporting

effect on the filtration flow weakens. In this case, one should expect a decline of the depression curve. In this
connection, the question arises: Can the depression curve reach the drain when the infiltration is at least slightly
higher than ε∗? A sufficiently unambiguous answer to this question is provided by numerical calculations with
double accuracy for a controlled relative error not higher than 10−4.

Let us consider flow for l = 0.1 and ρ = 0.01. In this case, for the boundary-critical regime, we have
ε∗ = 0.3388, ∆H = 0.4240, T ∗∗

0 = 1.5410, ∆T = 0.6294. The large value of the parameter ε is due to the fact that
the value of l is also chosen to be considerable from a practical point of view in order to reflect the specificity of
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linear drainage. We note that for 0.001, 0.01, and 0.5, we obtained ε∗ = 0.00473, 0.0454, and 0.8588, respectively.
As regards the parameter ρ, it has little effect on the value of ε∗; for example, for l = 0.1 and ρ = 0.0001 and 0.1,
we obtained ε∗ = 0.3388 and 0.3382, respectively. The value of ρ = 0.01 adopted in the calculations corresponds to
a mineral content of saline water equal to approximately 13 g/liter for NaCl [9].

For an infiltration ε = 0.34, which is slightly higher than its threshold value ε∗, and for hM = 0, i.e., for
the preservation of atmospheric pressure on the drain, in the critical regime at the interface, we have H = 0.02243,
∆H = 0.4031, T ∗

0 = 1.5417, and ∆T = 0.6294. Next, for the same infiltration and T0 = 2.0, 2.5, and 3.0, the
calculation yields ∆T = 0.0914, 0.0188, and 0.0039, respectively, which implies that the interface flattens out with
increasing depth. Meanwhile, the depression curve practically does not react to the recession of saline water: for
all indicated values of T0, with accuracy up to four significant figures, we obtained H = 0.02237 and ∆H = 0.4032.
A similar situation occurs for other small values of ρ, which allows the calculations for ε > ε∗ and T0 > T ∗

0 to be
performed within the framework of the model of complete flooding of the drains. Among the parameters determining
the flow in this case, one needs to specify the pressure on the drain, to which Eq. (17) or Eq. (18) is related. If
the pressure on the flooded drain is equal to or else higher than atmospheric pressure, the only possible critical
flow regime for the specified infiltration ε > ε∗ is due to the presence of the interface. The calculation of this flow
establishes the minimum admissible depth T ∗

0 of saline water.
Starting from the boundary-critical regime, we examine the effect of increasing the infiltration rate on the

freshwater fringe for hM = 0. A natural result of this is a rise of the depression curve, which is accompanied by its
flattening due to gradual recession from the drain; in particular, for ε = 0.4, 0.6, 0.8, and 0.9, the calculation gives
the following values, respectively: H = 0.2019, 0.8213, 2.3605, and 5.3146 and ∆H = 0.3045, 0.1180, 0.00298, and
6 · 10−7. This factor has a less significant effect on the position of the interface in the critical regime and almost no
effect on the deformation of the interface: for ε = 0.4 and 0.9, we obtained T ∗

0 = 1.5757 and 1.8059; ∆T = 0.6301
and 0.6333, respectively.

An increase in the pressure head on the drain has a similar effect on the shape and position of the depression
curve, whereas the effect of this factor on the average depth of the interface and its deformation is even smaller than
that of infiltration. Thus, for ε = 0.4 and hM = 3, we have T ∗

0 = 1.5499 and ∆T = 0.6292. A certain reduction
in the critical depth of saline water is a manifestation of the damping effect of an increase in the thickness of the
freshwater fringe with increasing pressure head on the drain.

As noted in Sec. 2, vacuum linear drainage is not typical of practice; nevertheless, for completeness of the
analysis, we consider this case. In particular versions with specified values of the quantities l, ρ, and ε > ε∗, one first
needs to calculate the double critical regime, which determines the minimum admissible values of the pressure head
h∗∗M < 0 on the drain and the initial depth T ∗

0 of saline water. For l = 0.1, ρ = 0.01, and ε = 0.34, 0.4, 0.6, 0.8, and
0.9, we obtain h∗∗M = −0.00017, −0.0176, −0.1284, −0.3045, and −0.4231, and T ∗

0 = 1.5418, 1.5810, 1.6878, 1.7706,
and 1.8064, respectively. From a comparison of these values of T ∗

0 with its values for ε = 0.4 and 0.9 and hM = 0
given above, it follows that drainage pumping by itself only leads to an insignificant increase in the critical depth of
saline water. The pressure decline on the drain has little effect on the deformation of the interface: for ε ∈ (0.4, 0.9)
in the double critical regime, the value of ∆T varies in the same range as for hM = 0: ∆T ∈ (0.6302, 0.6333).

The above-mentioned extremely weak effect of the density of saline water on the infiltration rate ε∗ in the
boundary-critical regime is also manifested in relation to the value of h∗∗M ; in particular, for l = 0.1, ε = 0.6, and
ρ = 0.0001 and 0.1, we obtained h∗∗M = −0.1284 and −0.1288, respectively. The values of H and ∆H also change
insignificantly. As regards the interface, its deformation and, particularly, position depend significantly on the
parameter ρ: for the above-mentioned values of the parameter in the double critical regime, we obtain T ∗

0 = 3.1513
and 0.9750 and ∆T = 0.6366 and 0.5936, respectively.

For T0 > T ∗
0 , the flow regime at the interface is normal, and the minimum admissible pressure head on

the drain h∗M is determined by calculating the simple critical regime on the depression curve. However, with
increasing T0, the value of h∗∗M calculated for the double critical regime remains unchanged up to the fourth significant
figure, which eliminates the need for special calculations to find the value of h∗M .

For hM > h∗∗M , where the depression curve is formed in the normal regime, the only constraint is due to the
quantity T0. Its minimum admissible value is established by calculating the flow in the simple critical regime at
the interface, although in this situation, too, as T ∗

0 one can use its value obtained for the double critical regime.
For example, for ε = 0.6 and ρ = 0.01 in the wide range of the pressure head hM on the drain increasing from the
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minimum value of −0.1284 in the double critical regime to unity, the value of T0 in the corresponding simple critical
regimes at the interface decreases from 1.6878 to 1.6777.

Let us study the flow characteristics for ε < ε∗, assuming as before that l = 0.1 and ρ = 0.01. As noted
above, the drain is completely flooded in this case, too, if hM > 0. Thus, for an infiltration ε = 0.1, which is
significantly smaller than the value of ε = 0.3388 for the boundary-critical regime, and for hM = 0 in the critical
regime at the interface, we have l0 = 0.0124, i.e., only a small part of the drain is flooded. For hM = 0.01, the
minimum thickness of the water layer above the drain is H = 0.0111. With further increase in the pressure head,
just as in the case ε > ε∗, the depression curve rises and flattens out and the average depth of the interface in the
critical flow regime decreases slightly with retention of its deformation.

The regularities detected for ε > ε∗ are true for the chosen parameters l, ε, and ρ and hM = 0. The
depression curve is little affected by the position of the lower boundary of the flow, and the latter flattens out with
increasing depth: the value of ∆T decreases from ∆T = 0.6190 to ∆T = 3 · 10−6 as T0 increases from the minimum
value of T0 = 1.2597 in the critical regime to T0 = 5. As regards the density of saline water, for its variation and a
fixed value of T0, the values of l0 and H1 are retained up to the seventh or eighth significant figure.

For the critical regime at the interface, the parameter ρ also has an insignificant effect on the nature of
the depression curve: as this parameter increases in the range ρ ∈ (0.0001, 0.1) and T ∗

0 decreases simultaneously
from T ∗

0 = 2.7167 to T ∗
0 = 0.5956, the quantities l0 and H1 increase in the intervals l0 ∈ (0.0124, 0.0126) and

H1 ∈ (0.1384, 0.1428). However, even with that insignificant variation of these quantities, one observes a supporting
effect on the flow from the interface during its rise. This effect is most pronounced for large values of the parameter ρ.
In particular, for ρ = 106, the values of l0 = 0.0124 and H1 = 0.1384, remaining almost unchanged at T0 � 1.5,
increase to l0 = 0.0253 and H1 = 0.2219 at T0 = 0.05 as the interface rises. In this case, the quantity ∆T reaches
the maximum value ∆T = 2 · 10−7, and, hence, in the case considered, the lower boundary becomes a horizontal
confining layer. For the same values of the parameters ρ and l as in the previous example and ε = 0.34, the
pressure head from the lower boundary of the flow is manifested at T0 < 1.5 in rise and flattening of the depression
curve. The average ordinate H0 of its points increases from H0 = 0.3361 for large values of T0 to H0 = 0.4263 for
T0 = 0.1250, and the quantities H and ∆H vary from values of H = 0.0224 and ∆H = 0.4032, respectively, to
values of H = 0.1825 and ∆H = 0.3477.

For T0 < T00, the critical flow regime is beyond the scope of the boundary-value problem being studied;
therefore, the constraint on the infiltration rate can be established only approximately. For this, we orient ourselves
to the corresponding value of ε = ε00 < ε0 determined by the second equality in (20), in which, in view of (21),
it is necessary to set T1 = (4/π)T0. The right side of the first equality in (20), from which the value of ε0 was
calculated for T0 = T00, now determines the quantity L∗ < 1, which, together with the quantities T0 and ε00, are the
parameters of the flow with the interface entering the drain [8]. This limiting situation fits the basic flow pattern for
L = L∗ with retention of the distance 2l1 between the terminal points of adjacent drains (see Fig. 1). For L > L∗,
the normal filtration regime is retained not only for an infiltration ε = ε00 but also in the case of its excess. The
degree of this excess, as noted above, can be determined approximately by calculations.

For l = 0.1 and ρ = 0.1 for the limiting regime with entry into the drain, calculations by formulas (20) and
(21) gave values of T00 = 0.3423, ε0 = 2.3747 · 10−3, and l0 = 1.3098 · 10−3. For a fixed value of T0 = 0.2, we
have L∗ = 0.9353, ε00 = 8.092 · 10−4, and l0 = 3.897 · 10−4. The last two parameters can be compared with the
parameters ε0 and l0 given above if we set L = L∗. For an initial value of L = 1, the range of admissible values of
the parameter ε is extended, and for ε = ε00, the flow occurs in the normal regime; in this case, T = 0.0424 and
l0 = 2.257·10−4. As the infiltration increases, the interface approaches the drain, and for ε = 1.1ε00 = 8.901·10−4 (at
the limit of the capabilities of the computational algorithm), we have T = 0.0108 and l0 = 3.597 · 10−4. Obviously,
the latter value of ε is close to the maximum admissible value. For L = 1.2, the flow characteristics were calculated
for ε = 1.25ε00 = 1.012 · 10−3, in particular, the calculations gave values of T = 0.0497 and l0 = 2.794 · 10−4. The
indicated overloads in the calculations are due to the fact that in such cases, some mapping parameters take nearly
limiting values. For example, in the latter version, d = 1.000083, g = −0.00812, and n = 2,789,388. In this case,
r = 38.365: the point R is located on the segment DN , i.e., on the lower surface of the drain (see Figs. 1 and 2).

Boundary conditions (1), which correspond to the flow pattern for complete flooding of the drains, include
the equality x = 0, which is common for the segments CM and EN . This equality expresses that they belong
to the line of symmetry of the flow and is used in Eqs. (13). This requirement, dictated by the original physical
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Fig. 5. Modified flow patterns.

formulation, does not affect the geometry of the flow region in the neighborhood of singular points and, eventually,
the velocity hodograph. Hence, we can depart from the condition |MD| = |ND| and consider some modifications
of the original physical formulation of the boundary-value problem formulated in Sec. 1, retaining the solution
representation (2) and the computational algorithm described above and taking into account that the right side of
the first equation in (13) now contains the quantity l0, which differs from the quantity l. For l0 < l, the flow pattern
can be treated as inflow to a basin of width 2(l− l0) with impermeable sidewalls and drainage under the basin that
protrudes a distance l0 beyond its walls; the free boundaries of this flow are denoted by digit 1 in Fig. 5. Digit 2
denotes the boundaries of the flow to the basin, whose walls are embedded in ground. In this case, the singular
point M passes onto the segment ND, and, hence, d < m < n, and the quantities l and l0 in Eqs. (13) denote the
width of the basin and the depth of the shield, respectively; in the second equation, the low limit of integration is
the parameter m. For l0 > l, the flow denoted by digit 3 in Fig. 5 occurs. It can also be interpreted physically by
assuming that under the middle part of the drain there is an impermeable inclusion of width 2(l0 − l) with vertical
walls that and water on this segment enters the drain only from above.

For input parameters ρ = 0.01, ε = 0.1, l = 0.1, and T0 = 1.5, the value of l0 = 0.0124 in the initial flow
pattern determines the abscissa of the point of entry of the depression curve into the drain. We use this point as the
control one. The first of the patterns listed above occurs if the vertical wall is located to the right of the indicated
point. As the shield is displaced to the right to the terminal point of the drain and is then deepened with transition
to the second modified pattern, the supporting effect of the shield on the flow is enhanced, resulting in a rise and
flattening of the depression curve: the quantities H and ∆H , which have values H = 0 and ∆H = 0.1223 when
the shield enters the drain at the control point, take values H = 0.4447 and ∆H = 0.0073 for l0 = 30 in the second
pattern. At the same time, the interface is significantly deformed: for the indicated variation of the position of the
shield, the quantity ∆T increases in the interval ∆T ∈ (0.1845, 0.6103).

The linear drainage model adopted in the present study was proposed by Joukowski [10] for the calculation
of groundwater inflow to irrigation ditches and rivers; later, it was used by Numerov and some other researches. In
formulating boundary-value problems describing filtration to linear sinks, it is natural to specify the pressure head
on them. Another schematization of horizontal drains by means of point sinks [5] corresponds to tubular drains
and water intakes and includes specification of their filtration discharge in the original formulation. Meanwhile,
in hydromeliorative practice, one usually has to specify the pressure head on the drain, whose allowance in the
boundary-value problem requires additional calculations.

For drains of small width, which are completely flooded even in the case of insignificant infiltration, is possible
to establish the relationship between the width 2l of a linear drain and the diameter δ of a tubular drain for which
the filtration discharges Q are identical for the same values of pressure head on the drains, where h = 0, and the
outer boundaries of the flows. From the expressions for the complex potentials of the flows produced by single point
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and linear sinks for l = δ, it follows that the difference µ between the values of the pressure head h in the patterns
compared decreases with distance from the drains to values of about δ exp (−πh/Q) with increasing pressure heads.
Since the intervals of such increase are limited within the limits of the flow region, the quantity µ depends greatly
on the drain dimensions. Summarizing the aforesaid, we conclude that a tubular drain of small diameter δ is
equivalent to a linear drain of width 2δ. Aver’yanov (see [9]) came to the same conclusion in considering a different
flow pattern with a drain.

In numerical calculations, we use the flow pattern to a linear drain, setting ε = 0.1, ρ = 0.01, T0 = 1.25, and
hM = 0. For each value of the quantity l, which is varied in the range l ∈ (10−5, 10−2), the average ordinate H0

of the points of the depression curve is calculated. The value obtained is specified, together with the remaining
above-listed input parameters, in the subsequent calculation of the characteristics of the flow to a point sink (see [3]);
one of them is the diameter δ of the tubular drain on whose contour the pressure p = 0 is the same as that on
the linear drain. Near the lower boundary of the indicated range of l, the equality l ≈ δ is valid with an error
comparable to the calculation error; in the patterns compared, all geometrical parameters of the freshwater fringe
also almost coincide. With increasing l, this error increases, and for l = 0.01, we have δ = 0.0123. On the lower and
upper boundaries of the chosen range of l, the quantity H0 takes values of H0 = 0.3944 and 0.1673, respectively. As
the dimensions of the drains increase, the concentrated effect of the point sink is manifested in somewhat greater
deformation of both free boundaries than that for the equivalent linear drains. Thus, for l = 0.01 in the linear and
tubular drainage patterns (for values of H0 and T0 identical for both patterns), we have ∆H = 0.1215 and 0.1218
and ∆T = 0.4497 and 0.4500, respectively.

Conclusions. The analysis of the flow to horizontal linear drains in a fresh groundwater fringe above saline
groundwater completes the studies started in [1]. Based on the direct formulation of the corresponding boundary-
value problem, the diversity of its physical content is revealed, the effect of each determining parameter on the flow
pattern is evaluated, and the relationship between the linear and point drainage models is found. Among the flow
features we note the weak dependence of the degree of deformation of the interface and the minimum admissible
depth of saline water on the infiltration rate and the pressure head on the drain for its complete flooding and the
negligibly small effect of the density of saline water on the position of the depression curve. The latter circumstance
allows the calculation results for the flow characteristics at the top of the fresh groundwater fringe to be extended
to the filtration model in ground with a confining layer without transforming the calculation formulas. In the
boundary-value problem considered, this model can be approached by achieving almost complete flattening of the
interface boundary by increasing the parameter ρ.
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